

ER
D

C/
CR

R
EL

 T
R

-0
9

-1
7

Object-Oriented Software Model for
Battlefield Signal Transmission and Sensing

D. Keith Wilson, Richard Bates, and Kenneth K. Yamamoto December 2009

C
ol

d
 R

eg
io

n
s

R
es

ea
rc

h
 a

n
d

E

n
gi

n
e
er

in
g

La
b

or
at

or
y

Approved for public release; distribution is unlimited.

Seismic
Acoustic

EO/IR

RF

Seismic
Acoustic

EO/IR

RF

Geospatial Research and Engineering ERDC/CRREL TR-09-17
December 2009

An Object-Oriented Software Design for
Battlefield Signal Transmission and Sensing

D. Keith Wilson, Richard Bates, and Kenneth K. Yamamoto

Cold Regions Research and Engineering Laboratory
U.S. Army Engineer Research and Development Center
72 Lyme Road
Hanover, NH 03755-1290

Final report

Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

 Under AT42 GEOINT Exploitation in Man-Made Environments: Nations to Insurgents (GEMENI)

ERDC/CRREL TR-09-17 ii

Abstract: Realistic modeling and simulation of battlefield signal trans-
mission and sensing requires accounting for many complicated environ-
mental and mission-related factors. These factors present complex chal-
lenges because of their diversity. Yet, successful modeling and simulation
can enable effective mission planning and can support a variety of other
military objectives. This report describes the development of a very flexi-
ble, object-oriented software design for predicting signal transmission and
sensing on the battlefield. This Java-language software is called Environ-
mental Awareness for Sensor and Emitter Employment (EASEE). It is in-
tended for application to a wide range of sensing modalities, and for in-
corporation into military command and control (C2) systems, decision
support tools (DSTs), and force-on-force simulations. An initial version of
a user interface for EASEE has been completed and a Java OpenMap im-
plementation has begun. The goal of this work is to make EASEE general
enough to be implemented within many software architectures, which will
enable advanced signal propagation and processing calculations in a num-
ber of modeling and simulation efforts in support of the warfighter and
homeland security.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC/CRREL TR-09-17 iii

Contents
Figures and Tables...iv

Preface...v

1 Introduction... 1
Background .. 1
Objectives ... 2
Tech transfer... 2
Outline of information .. 2

2 Object-Oriented Software Design... 4
Introduction to object-oriented programming... 4
An object-oriented view to signal transmission and sensing... 6

3 Signature Data Features ... 8
Signal model objects.. 8
Feature definitions ...11

4 Inference Objects ...13

5 From Feature Generation to Inference Fusion..15
Information flow ...15
Software implementation .. 17

6 Platforms: Sensor and Emitter Representation..20
Configuration of a platform..20
Software implementation ..21
Platform positioning and problem viability ...23

7 Environmental Representation...26

8 Signal Transmission Grids ...28

9 Conclusions...31

References..32

Appendix: Overview of EASEE Java Packages..34

Report Documentation Page

ERDC/CRREL TR-09-17 iv

Figures and Tables

Figures

Figure 1. Illustration of inheritance and polymorphism. Orange and apple are subclasses
of fruit. Macintosh and Gala are subclasses of apple. Left: Methods written for fruit accept
all classes denoted in green, which includes fruit, orange, apple, Macintosh, and Gala.
Right: Methods written for apple accept apple, Macintosh, and Gala.. 6
Figure 2. Statistical signal model inheritance tree. ..11
Figure 3. Inference model inheritance tree. Black boxes indicate inferences that are
formed from signal models; green boxes indicate inferences that are formed (fused) from
other inferences. .. 14
Figure 4. Flow diagram for processing of signature data features and inferences. The
signature data features are generated, propagated through the environment, sensed, and
then processed into inferences. The inferences may then be fused into other inferences.
Solid boxes indicate functionality of abstract objects, whereas the dashed lines are
interfaces. ...15
Figure 5. Configurations of feature transmitters and processors to represent a wheeled
ground vehicle (left) and an unattended aerial vehicle (right)... 21
Figure 6. Configurations of feature and fusion processors to represent an intrusion
detection sensor (left) and a ground-sensor gateway/fusion node (right). .. 21
Figure 7. Derivation of the GammaSignalModel class, showing its parent classes and
inherited methods..34
Figure 8. Derivation of the detection feature and fusion processors, showing parent
classes and inherited methods...35

ERDC/CRREL TR-09-17 v

Preface

This study was conducted for the U.S. Army Corps of Engineers. Funding
was provided by the Engineer Research and Development Center (ERDC)
Geospatial Intelligence (GEOINT) program, Exploitation in Man-made
Environments: Nations to Insurgents (GEMENI).

The work was performed by the Signature Physics Branch (CEERD-RR-D)
of the Research and Engineering Division (RR) at the U.S. Army Engineer
Research and Development Center – Cold Regions Engineering Research
Laboratory (ERDC-CRREL). The principal investigator was Dr. D. Keith
Wilson (RR-D). The graphic on the title page of this report was created by
Dr. Dale R. Hill (ERDC-CRREL). The authors thank Dr. George G. Koenig
of ERDC-CRREL’s Terrestrial and Cryospheric Sciences Branch (CEERD-
RR-G) for providing helpful comments on a draft version of this report.

At the time of publication, Dr. John M. Boteler was Chief, CEERD-RR-D;
Dr. Justin B. Berman was Chief, CEERD-RR; and Dr. Dale R. Hill was the
Acting Technical Director for Geospatial Research and Engineering. The
Deputy Director of ERDC-CRREL was Dr. Lance D. Hansen, and the
Director was Dr. Robert E. Davis.

COL Gary E. Johnston was the Commander and Executive Director of
ERDC, and Dr. James R. Houston was the Director.

ERDC/CRREL TR-09-17 1

1 Introduction

Background

The performance and utility of battlefield and homeland security sensors
depends on many complex factors, both environmental and mission-
related. This is generally true whether the sensors are ground-based or
airborne; whether they are acoustic, seismic, optical, infrared (IR), radio
frequency (RF), or magnetic; and whether the signal emitters originate
from vehicles, humans, or electronic equipment. Realistic modeling and
simulation of factors that influence sensing and signal emission can enable
effective mission planning, improve virtual prototyping of sensor systems
and signal processing algorithms, and support force-on-force simulations
and doctrinal development.

An additional challenge to develop advanced modeling and simulation ca-
pabilities is the diversity of sensors and signal emitters on the battlefield
(including targets of interest plus natural and man-made interferences),
and the environmental phenomena affecting those sensors and emitters.

As an example, let us contrast modeling of acoustic and IR sensors. The
following paragraph illustrates why different sensing modalities are often
modeled by very different approaches, and those different approaches may
be challenging to reconcile.

Acoustic signatures produced by vehicles typically depend strongly on the
vehicle type and its operation. Environmental variables such as tempera-
ture and solar loading have a minor effects on the acoustic signature. How-
ever, the impact of weather and terrain on acoustic signal propagation is
very significant, because wind and temperature gradients refract the sound
waves, and the sound diffracts around hills and buildings. Microphones
usually have a nearly omnidirectional response that does not vary substan-
tially with environmental conditions. On the other hand, passive IR signa-
tures depend on differential heating and cooling of the target and back-
ground, which is a function of solar irradiation, evaporation, wind flow,
and other factors. The atmospheric effect on the signal transmission (the
optical depth) is often a secondary concern, at least for short transmission
paths in clear weather. For an IR sensor, the directionality (field of view) is
the important consideration.

ERDC/CRREL TR-09-17 2

Objectives

The purpose of this report is to describe a software design for predicting
the performance of various types of battlefield sensors and detecting vari-
ous types of emitters. We developed a design that is general enough to
readily incorporate the diverse factors illustrated in the preceding para-
graph. Although our emphasis is on decision support tools (DSTs) for bat-
tlefield command and control (C2) applications, and incorporation of such
tools into geospatial information systems (GIS) (Wilson et al. 2007; Hieb
et al. 2007; Frankenstein and Koenig 2004), our broader intention is to
produce a highly flexible software design that can be used in a great variety
of modeling and simulation applications.

Tech transfer

EASEE is intended for application to a wide range of sensing modalities,
and for incorporation into military command and control (C2) systems,
decision support tools (DSTs), and force-on-force simulations. An initial
version of a user interface for Environmental Awareness for Sensor and
Emitter Employment (EASEE) has been completed and a Java OpenMap
implementation has begun. The goal of this work is to make EASEE gen-
eral enough to be implemented within many software architectures, which
will enable advanced signal propagation and processing calculations in a
number of modeling and simulation efforts in support of the warfighter
and homeland security.

Outline of information

The software design is called Environmental Awareness for Sensor and
Emitter Employment, or EASEE. This report describes the structure of
EASEE. We begin, in Section 2, with a short introduction to object-
oriented programming (OOP), which underlies the EASEE design. This
section also describes the key components of DSTs such as EASEE. This
discussion motivates the central role of statistical models for signature
data features, which is the topic of Section 3, and statistical models for in-
ferences, which is the topic of Section 4. Section 5 discusses the informa-
tion flow from generation of the signature data features to fusion of infer-
ences, and how this is implemented in EASEE. Section 6 describes how the
various modeling components outlined in Section 5 are built into model
emitter and sensor platforms. Representation of the environment (atmos-
phere and terrain) is the topic of Section 7. Efficient representation of sig-

ERDC/CRREL TR-09-17 3

nal transmission is discussed in Section 8. Finally, information on specific
Java software packages comprising EASEE is provided in the Appendix.

ERDC/CRREL TR-09-17 4

2 Object-Oriented Software Design

Introduction to object-oriented programming

The EASEE software design is formulated within the conceptual frame-
work of object-oriented programming (OOP). In this section, we provide a
brief introduction to OOP, particularly as it is implemented in the Java
programming language. (Readers unfamiliar with OOP or Java may find
this helpful in understanding the remainder of the report.)

OOP is a conceptual approach to programming. Many programming lan-
guages introduced over the past 20 years or so, including Java, C++, and
C#, were specifically designed to facilitate OOP. OOP techniques can be
implemented in other languages, but often the coding is more cumber-
some and the result less elegant than for a dedicated OOP language.

OOP can perhaps be best understood by contrasting it to more familiar
modular programming in languages such as FORTRAN 77, Pascal, and C.
Good programming practice in these languages generally involves parti-
tioning a more complicated task into a number of subtasks, with each sub-
task being implemented in a function, procedure, or subroutine. Hence the
emphasis is on the algorithmic formulation rather than the data upon
which the algorithms operate. OOP, in contrast, endeavors to group data
into collections that represent particular entities, or objects. Tasks, or
methods, are then associated with these objects. This association between
data collections and the tasks performed upon them is the main idea be-
hind OOP.

Objects possess the following characteristics (Lowe 2005):

• Type. Some examples of object types are a person, an automobile, and
a geographic coordinate. In Java, types are called classes.

• Identity. With regard to the types mentioned above, corresponding ex-
ample identities would be Bob, my Chevrolet, and the location of
CRREL. In Java, objects of a particular type are said to be instances of
the class.

• State. Corresponding to the above, these might be cheerful, parked,
and 43.697 N 72.311 W. In Java, the fields (variables) of the class de-
scribe its state.

ERDC/CRREL TR-09-17 5

• Behavior. Corresponding to the above, these might be hard working,
reliable, and coordinate conversions. In Java, methods describe the be-
havior of the class.

Some other important concepts related to OOP are inheritance, instantia-
tion, abstraction, overloading, visibility, and polymorphism.

Inheritance refers to the ability to use one class as a basis for designing
another. For example, a class representing fruit may be the basis for one
representing apples, which may in turn be the basis for one representing
McIntosh applies (Figure 1). The “apple” class is said to be a subclass (or
extension or child) of the superclass (or base or parent) “fruit.” When a
subclass redefines a method (behavior) defined in the parent class, that
method is said to be overloaded.

When an object of a class is created, it is said to be instantiated. In Java,
constructor methods are used to create objects and initialize their fields if
desired. An abstract class is one that cannot be instantiated. However, it
can still serve as the basis for subclasses that can be instantiated.

The visibility of a field or method refers to its availability outside of the
class in which it is defined. In Java, the keyword public identifies a field
or method that can be accessed outside of the class. Fields and methods
that are protected can be accessed only within the class or by sub-
classes, whereas private fields and methods can be accessed only within
the class.

Polymorphism refers to the ability of objects of a subclass to take on the
identity of objects of the parent class. This is actually a key reason why ob-
ject-oriented languages can be such powerful tools. When code is written
for the highest-level object possible, all lower-level objects can automati-
cally utilize this code. This approach is consistent with scientific principles
of identifying and modeling general features and behaviors. It is illustrated
in Figure 1. In Java, the classes of objects can be explicitly changed if de-
sired; this is called casting.

How does this discussion of object-oriented programming relate to our
goal of developing a general software design accommodating different sig-
nal types, propagation models, and weather and terrain inputs? Essen-
tially, the idea is to abstract the functionality to the highest level possible

ERDC/CRREL TR-09-17 6

through application of OOP concepts of inheritance and polymorphism.
As will become clearer in the following discussion, such an approach
greatly facilitates the development of general purpose code.

fruit

orange apple

GalaMacintosh

fruit

orange apple

GalaMacintosh

fruit

orange apple

GalaMacintosh

fruit

orange apple

GalaMacintosh

Figure 1. Illustration of inheritance and polymorphism. Orange and apple are subclasses of
fruit. Macintosh and Gala are subclasses of apple. Left: Methods written for fruit accept all
classes denoted in green, which includes fruit, orange, apple, Macintosh, and Gala. Right:

Methods written for apple accept apple, Macintosh, and Gala.

An object-oriented view to signal transmission and sensing

Wilson et al. (2008) suggested that a DST for predicting battlefield sensor
performance (or the reciprocal problem, detectability of battlefield targets)
involves the following steps: (1) information gathering and construction
of the environmental and tactical scenario, (2) translation of this informa-
tion into parameters needed by signal and noise prediction models, (3)
signal and noise prediction (providing a parametric description of the sig-
nal and noise from the emitter characteristics, signal propagation, and
sensor processing), (4) calculation of sensor performance metrics (e.g.,
probability of detection or accuracy of target localization), and (5) display
of and interaction with the information (graphical interface).

Although all of these steps are important in the design of a satisfactory
DST, steps (3) and (4) are the primary steps targeted by the EASEE archi-
tecture. They involve prediction and interpretation, respectively, of the
sensor-related information. The essence of these steps is that a sensor re-
ceives a “raw” data stream containing the combined signal from the emit-
ter of interest as well as interfering background noise (clutter). This data
stream is then processed into a set of signature data features which are
used to infer characteristics of the signal emitter(s) of interest. Hence pre-
diction of these sensed features (step 3) and the inferences made from
them (step 4) can be considered the key parts of the problem. This discus-
sion suggests that an object-oriented approach to battlefield signal trans-
mission and processing involves two fundamental types of objects: signa-
ture data features and inferences.

ERDC/CRREL TR-09-17 7

As will be seen, the EASEE architecture is also designed to facilitate step
(2), translation of the environmental information, as needed to support
steps (3) and (4). However, EASEE itself does not perform steps (1) and
(5). We envision that these will be performed by a separate software pro-
gram that interfaces with EASEE, which we call here the user application
interface. EASEE is designed to be transportable between many such in-
terfaces.

The next question to be considered is what characteristics of the signature
data features are actually needed to predict sensor performance? In gen-
eral, we cannot predict the precise values of the features in a particular cir-
cumstance, as the signals are subject to random generation mechanisms
and propagation effects. Thus we model and predict their statistical distri-
butions; the inferences should then also be viewed in a probabilistic sense.

The identification of signature data features and inferences as the primary
items of interest may, in retrospect, seem obvious. However, DSTs have
not normally been built explicitly upon this simple premise. On the con-
trary, models for signal propagation physics, noise backgrounds, and sig-
nal processing involve a wide variety of implicit and explicit statistical as-
sumptions that tend to vary greatly with the particular field (acoustics,
optics, radio frequency, etc.). Simulations are often built around genera-
tion and processing of raw signals, a practice that can be very computa-
tionally expensive for C2 applications. When statistical models are used,
different ones may be appropriate for describing different types of target
signatures, propagation effects, and signal processing formulations. The
following two sections provide more detail on the concepts of signature
data feature and inference objects, as implemented in EASEE.

ERDC/CRREL TR-09-17 8

3 Signature Data Features

Signature data feature is a widely used term, but rather difficult to define
precisely. The term generally refers to information extracted from a signal
that might identify the source of that signal. Signature data features are
not ordinarily the raw sensor data, but rather result from some low-level
processing of raw data, such as calibrations to remove the sensor response
and filtering of the signal into spectral bands. Other examples might in-
clude the sound power of a harmonic line or in a standard octave band; IR
brightness in near, shortwave, midwave, longwave, or far bands; compo-
nents of an electromagnetic field vector; or concentration of a chemical or
biological species. Typically, the feature would represent a conservative
quantity, such as energy or mass. In the literature on sensor data process-
ing, signature data features as described here can be associated with the
output of level-zero information processing (Klein 2004).

Signal model objects

In general, signature data features vary randomly. The generation process
is often irregular, and propagation through the environment is subject to
random effects such as turbulence. Thus it is necessary to describe the fea-
tures with statistical models. Some examples of appropriate statistical
models include Gaussian (normal), exponential, gamma, lognormal,
Rayleigh, Rice-Nakagami, central chi-square, and noncentral chi-square
probability density functions (pdfs). (Examples are in Burdic 1984; Wilson
et al. 2002; and Nadarajah 2008.)

The Gaussian model, while advantageous for its simplicity and tractability,
can reasonably be applied to signal power only when the standard devia-
tion is much less than the mean; otherwise, the signal power would fre-
quently be negative, which is not physical.

For randomly scattered signals (e.g., acoustic or RF scattering by build-
ings, vegetation, and turbulence), other pdfs are appropriate. The expo-
nential pdf describes a single, strongly scattered signal, and is a special
case of the central chi-square pdf, which describes the sum of multiple,
strongly scattered signals. The noncentral chi-square pdf can include a de-
terministic (non-zero mean) contribution. Since the lognormal pdf models
variables that can be the multiplicative product of many independent,

ERDC/CRREL TR-09-17 9

positive random variables, it is a good approximation of many atmos-
pheric physical and chemical properties, including the plume size and fre-
quency distributions of transient gases from turbulent processes (Baker et
al. 1983; Limpert et al. 2001). Hence, the lognormal pdf is well suited to
representing concentrations of chemical or biological species that may be
dispersed into the atmosphere.

In some cases, the features at a sensor may not be statistically independ-
ent. The pdf should then actually be a joint pdf between multiple kinds of
sensed data. In principle, the multiple sensed data features could be re-
garded and manipulated by processing algorithms as a single entity. To
implement predictions involving a sensor array, such as bearing estima-
tion, joint signal models including spatial correlation functions of the sig-
nals would be necessary.

Stitching together disparate statistical formulations, like those described
in the preceding paragraphs, is a challenging programming task. But, it
must be done if very general software designs are to be successfully devel-
oped. A parametric description of the pdf of a signature feature may be re-
garded as a programming object, the propagation and manipulation of
which is central to EASEE.1 In Java, it is natural to represent each distri-
bution as a class, with each class defining the model parameters for the
signature features. We call these signal-model classes. The signal-model
class specifies how the parametric pdfs are to be manipulated; in particu-
lar, a method for calculating the pdf itself must be supplied. Optionally,
translators to explicitly convert parametric pdfs from other classes may be
included, although when possible the conversion is made automatic when
signal-model objects are cast from one class to another.

Classes can implement certain manipulations of the pdfs that are useful
for probability of detection and other types of information processing. For
example, most probability of detection calculations involve integrating the
pdf for signal power between zero and a threshold value (the detector
threshold), or between the threshold value and infinity. (In statistics, these
are called cumulative distribution functions, or cdfs.) Determination of the
threshold (quantile, or inverse cdf) corresponding to a specified probabil-
ity is also of interest. These operations are logically associated with the

1 Since probability density functions, cumulative density functions, quantiles, and other statistical con-
cepts are discussed in detail elsewhere, we do not introduce these concepts here. Wilks (2005) is
highly recommended to readers interested in an introduction to this subject.

ERDC/CRREL TR-09-17 10

signal-model class, rather than with sensor feature processors. In this
manner they can be reused by multiple processors.

The signal-model class must also specify how to calculate the pdf of the
combination (sum) of two signals. This is essential to the overall architec-
ture, since multiple signals of interest and interfering signals may arrive at
a sensor. The calculation is trivial for Gaussian (normally distributed) sig-
nals, in which case the mean and variance of the sum signal are found by
summing the means and variances of the contributing signals. Although
the Gaussian model is simple and tractable, it is unrealistic for many situa-
tions, as discussed earlier. Unfortunately, for other known models com-
monly used to describe random signals, such as the exponential, chi-
square, and Rice-Nakagami distributions, the pdf of the sum has a differ-
ent functional form than the pdf of the contributing signals, and in some
cases, no analytical result is available at all. In many situations there ap-
pears to be no alternative to approximating the pdf of the combined signal.

For efficiency, all methods in the signal-model classes are parallelized to
operate on multiple data points, which would normally represent different
locations or times. That is, each parameter in the pdf is given by an array
of values, each element of which corresponds to the pdf parameter for a
different location or time.

Inheritance plays an important role in the EASEE signal-model implemen-
tation. A base signal-model class, called AbstractSignalModel, is de-
fined with abstract methods for calculating signal means, variances, pdfs,
cdfs, and quantiles. Extensions (subclasses) of the abstract base class im-
plement these operations. By convention, these subclasses are assigned
names like GaussianSignalModel, in which case a Gaussian pdf is used
to describe the signal statistics. Similarly, GammaSignalModel would use
a gamma-function pdf. This structuring of the signal-model classes, in
which the actual statistical models are extensions of a parent abstract
class, is central to the entire EASEE architecture. It allows sensor data
processing models to be written in a way that is general for any statistical
model for the signals.

An object tree illustrating a set of signal model classes and inheritance
relationships is shown in Figure 2. The abstract class for constant (time-
invariant) signal models extends the abstract base class
(AbstractSignalModel) directly. The constant signal model class

ERDC/CRREL TR-09-17 11

(called ConstantSignalModel) involves just one parameter, namely the
signal mean. Four other signal-model classes extend this class to variable
signals possessing other pdf parameters in addition to the mean: these are
for discrete-valued (multiple, fixed values), exponential, Gaussian, and
log-normal pdfs. The gamma signal model extends the exponential.

Constant
signal model

Log-normal
signal model

Exponential
signal model

Gamma signal
model

Multiple,
constant signal

model

Multiple,
Gaussian signal

model

Discrete signal
model

Base signal
model (abstract)

Gaussian
signal model

To be implemented
(for sensor arrays)

Constant
signal model

Log-normal
signal model

Exponential
signal model

Gamma signal
model

Multiple,
constant signal

model

Multiple,
Gaussian signal

model

Discrete signal
model

Base signal
model (abstract)

Gaussian
signal model

To be implemented
(for sensor arrays)

Figure 2. Statistical signal model inheritance tree.

The signal model classes like GaussianSignalModel and
GammaSignalModel are non- abstract – they implement all of the
functionality prescribed by the AbstractSignalModel. However, they
do not define the signature data features to which they apply.

Feature definitions

In EASEE, the definition of signature data features is independent from
the signal model classes used to represent them. The feature definition is
specific to the kind of signal. Features are defined through Java enumera-
tions (enum types), which list the applicable signature features and their
properties.2 This design makes it possible for multiple kinds of signals to
use a common signal model. Enumerations are presently available for
acoustic, optical, radio-frequency, seismic, chemical, and biological fea-
tures. The acoustic and optical enumerations are described here to illus-
trate the general design.

2 A Java enum type is an alphanumeric listing of the members of a set. For example, the suits in a deck

of cards might be defined with a Java enum containing the names “spades,” “hearts,” “clubs,” and
“diamonds.”

ERDC/CRREL TR-09-17 12

At present, two enumerations have been developed for acoustical features.
AcousticOctaveBandFeatures defines standard acoustic octave and
third-octave bands. The definition consists of a descriptive name, and the
lower and upper frequency bounds for the band. For example, the
ACOUSTIC_OCTAVE_63HZ has frequency limits from 63/(21/3) to
63(21/3), whereas the ACOUSTIC_THIRD_OCTAVE_63HZ has frequency
limits from 63/(21/6) to 63(21/6). Methods are defined for calculating the
arithmetic and geometric center frequencies.
AcousticSpectralBandFeatures is similar, except that it defines 1 Hz
(constant bandwidth) bands, from 0–500 Hz. This enumeration is useful
for representing power spectra produced by Fourier transforms.

The optical enumerations are provided by OpticalSignalFeatures.
Twenty-seven different optical bands are defined, which span the ultravio-
let, visible, and infrared spectral regions. The optical bands are defined by
their lower and upper wavelengths. For example, a visible feature
VISIBLE is defined as extending from 380–750 nanometers (nm). For
higher resolution applications, the visible region is broken down into six
color regions, VISIBLE_VIOLET, VISIBLE_BLUE, VISIBLE_GREEN,
VISIBLE_YELLOW, VISIBLE_ORANGE, and VISIBLE_RED.
VISIBLE_GREEN, for example, extends from 495–570 nm. Additional
spectral bands could be readily added to the Java enumerations; no other
significant changes to the software would be needed to accommodate new
feature definitions.

ERDC/CRREL TR-09-17 13

4 Inference Objects

As mentioned earlier, the signature data features are processed into infer-
ences. Some examples of possible inferences are whether a target is pre-
sent (a detection inference), what kind of target it is (a classification infer-
ence), and what direction the target is in (a bearing inference). Inferences
may also be formed by fusing inferences from multiple sensors (e.g., seis-
mic and IR detection inferences could be combined for a more robust de-
tection inference). In an actual sensing system, the features would nor-
mally be processed directly to form a hypothesis or estimate, such as
whether a target is present. For present purposes, however, we are con-
cerned with probabilistic predictions of performance of sensors — e.g.,
probability of detection. The statistical description of an inference is spe-
cifically what we mean here by an inference object.

An inference object class has fields describing the inference statistics and
related information, and methods for calculating the inference statistics.
As with the signature data features, an abstract base class is defined at the
root of the inheritance tree (Figure 3). This class,
AbstractInferenceModel, includes methods for checking
compatibility between inferences. It is extended by
PowerInferenceModel, DetectionInferenceModel, and other
inference classes.

PowerInferenceModel represents the mean and variance of the signal
and noise powers at a sensor. These are to be inferred from the signal
models at the sensor. Methods for retrieving and setting the means and
variances, and for producing mean signal-to-noise ratios, are provided.

DetectionInferenceModel includes fields for the probabilities of de-
tection and false alarm. Methods for producing the probabilities of false
dismissal (missed detection) and correct dismissal are also provided, as
are methods for combining detection inferences. The latter describe how
to calculate the probabilities of detection and false alarm from multiple
signature features (a feature processor) or from multiple inferences (a fu-
sion processor).

ERDC/CRREL TR-09-17 14

For all inferences, a null value must be defined. The main idea is that when
an inference is combined with a null inference, its value does not change.
For power inferences, the value of the null inference is simply zero power.
But, for other types of inferences, the null inference is not as obvious. For
probability of detection inferences, for example, the null inference is de-
fined as probabilities of detection and false alarm equal to zero.

Another important type of inference is the location of a source. Such infer-
ences might be created by combining bearings and/or ranges from multi-
ple sensor platforms. Support for this type of inference is not yet fully im-
plemented in EASEE.

Target location
inference

model

Detection
inference

model

Power
inference

model

Base inference
model (abstract)

Target bearing
inference

model

To be implemented
(for sensor arrays)

= inferences formed by fusing inferences

= inferences formed from signature data features

Target location
inference

model

Detection
inference

model

Power
inference

model

Base inference
model (abstract)

Target bearing
inference

model

To be implemented
(for sensor arrays)

Target location
inference

model

Detection
inference

model

Power
inference

model

Base inference
model (abstract)

Target bearing
inference

model

To be implemented
(for sensor arrays)

= inferences formed by fusing inferences

= inferences formed from signature data features

Figure 3. Inference model inheritance tree. Black boxes indicate inferences that are formed from

signal models; green boxes indicate inferences that are formed (fused) from other inferences.

ERDC/CRREL TR-09-17 15

5 From Feature Generation to Inference
Fusion

Information flow

As described up to this point, the focus of the EASEE software design is on
statistics of signature data features (signal models), which represent units
of information yielded by sensors. The signal models can be regarded as
objects that must be transmitted, received, and processed, as illustrated in
Figure 4.

Feature
generator

Feature
propagator

Feature
processor

Fusion
processor

Transmitter platform

inference
communication

signature data
transmissions

Feature
sensor

Receiver platform Fusion platform

Feature
generator

Feature
propagator

Feature
processor

Fusion
processor

Transmitter platform

inference
communication

signature data
transmissions

Feature
sensor

Receiver platform Fusion platform

Figure 4. Flow diagram for processing of signature data features and inferences. The signature
data features are generated, propagated through the environment, sensed, and then processed

into inferences. The inferences may then be fused into other inferences. Solid boxes indicate
functionality of abstract objects, whereas the dashed lines are interfaces.

A signature feature statistic generator, or feature generator for short, is a
physical model for the production of signals observable by a sensor. De-
pending on the context, the feature generator might be referred to as an
emitter, source, transmitter, or target. For present purposes, we adopt the
first of these terms. A single feature generator may produce multiple fea-
tures, including features pertaining to different modalities, acoustic and
electromagnetic waves for example.

A feature propagator calculates effect of the environment on the propaga-
tion of signature feature statistics. The results of such transmission calcu-
lations generally depend on the target/sensor geometry as well as details
of the terrain and atmospheric environments. Signal transmission is gen-
erally a linear phenomenon, which means that the transmitters operate on
multiple features independently and in parallel.

ERDC/CRREL TR-09-17 16

The process of feature generation and propagation applies to emitters of
interest as well as interfering background noise (clutter). In fact, the same
computational models may be used when appropriate.

While the operations of feature generation and propagation are conven-
iently conceptualized as distinct from a physical point of view, from the
standpoint of software implementation they can be viewed as a single op-
eration, the purpose of which is to produce signal models at the location of
the receiver. We term this operation feature transmission. Hence, in the
terminology of EASEE, transmission combines feature generation and
propagation. (In other contexts, the word transmission may apply to ei-
ther signal generation, propagation, or a combination; here, we use it
strictly for the combination.)

A feature sensor gathers and combines multiple transmitted signals. It can
also apply a transfer function to the signal; that is, the levels of the features
can be adjusted relative to one another to reflect the response of the sensor
in different frequency regions. The feature sensor can also add signal
model objects representing the sensor self noise (e.g., noise introduced by
the pre-amplifier in a microphone).

A feature processor analyzes one or more statistical descriptions of signa-
ture features, from which it draws inferences (predictions) about the per-
formance of a sensor system. Depending on the context, the feature proc-
essor might be referred to as a sensor or receiver. An inference is,
essentially, the information desired from a sensor system.

Conceptually, feature sensing and processing may be viewed as a single
function, much as feature generation and propagation were earlier viewed
as a single function (feature transmission). The combined function of fea-
ture sensing and processing could likewise be called feature reception.

Besides being drawn directly from signature features, inferences may pos-
sibly be drawn from other inferences. For example, the probability of de-
tection of a sensor network might be calculated from probabilities of de-
tection of individual feature processors. We call a processor that draws
inferences from other inferences a fusion processor.

ERDC/CRREL TR-09-17 17

Software implementation

Java interfaces3 are used to represent particular capabilities for transmit-
ting signature data features and producing inferences. A feature transmit-
ter, feature receiver, or fusion processor by definition implements one of
these interfaces. The scope of the interfaces is illustrated by the dashed
lines in Figure 4. The interfaces follow an inheritance tree structure some-
what like (but not completely paralleling) the corresponding trees for sig-
nal models and inferences shown in Figure 2 and Figure 3.

A feature transmitter implements an interface describing a method called
transmitFeatures, which specifies the feature enumerations to be
transmitted. For example, the OpticalSignalTransmission interface
describes the transmitFeatures method needed to transmit signature
data features belonging to OpticalSignalFeatures.

Since feature receivers and fusion processors both produce inferences,
they use an overlapping set of interfaces. For example,
DetectionProcessing governs the implementation of any object that
produces detection inferences, whether these are produced by a feature or
fusion processor. It specifies a method called getProcessorPd, which
produces detection inferences. But, not all inferences can sensibly be
produced by both feature and fusion processors. For example, the
LocationProcessing interface would likely be implemented only by a
fusion processor, such as an algorithm that fuses target bearings from
multiple feature processors.

The interfaces are generally configured to produce Java ArrayList types.
An ArrayList is a collection of objects of a certain class or its subclasses.
For example, the transmitFeatures method in the
OpticalSignalTransmission interface produces an ArrayList of
AbstractSignalModel objects. Each of these objects corresponds to the
output of a distinct signal generator/propagator combination. This signal-
model collection can then be combined with collections produced by other
transmitters, and sent to an implementation of DetectionProcessing,
which determines the probability of detection.

3 A Java interface is a class consisting entirely of abstract methods. Subclasses implement (provide non-

abstract) versions of the methods. The interface programming technique is useful for standardizing the
names and input arguments used by methods.

ERDC/CRREL TR-09-17 18

The interfaces encapsulate various objects described in the previous
section, as shown in Figure 4. There are abstract base classes called
FeatureGenerator, FeaturePropagator, and FeatureSensor.
These are implemented by non-abstract classes such as
SeismicFeatureGenerator and AcousticFeatureSensor. The
latter is extended by the Microphone and HumanListener classes.
Similarly, OpticalFeatureSensor is extended by
GenericOpticalSensor and HumanViewer, whereas
SeismicFeatureSensor is extended by Geophone. The Microphone
and Geophone classes realistically capture the sensor properties of typical
microphones and geophones.

Feature generators and feature propagators delegate their task to select-
able generation and propagation models. These models range from very
simple to quite complex. The purpose of having a series of selectable mod-
els is to allow users to choose between relatively fast, but low fidelity mod-
els and relatively slow, but high fidelity models. All generators have avail-
able a binary generation model, which simply produces a value of 1 when a
feature is selected, and 0 when it is not. The acoustic and seismic genera-
tors have models that read measured signatures from a library of data
files. Propagators share models for replication (copying of signal models),
cylindrical wave spreading (two-dimensional propagation), spherical wave
spreading (three-dimensional propagation), and line-of-sight propagation.
The replication method is used to copy noise backgrounds to multiple spa-
tial locations. The acoustic feature propagator also has an impedance-
plane (acoustically absorbing ground surface) model (Attenborough et al.
1980), and a Crank-Nicholson parabolic equation model (West et al.
1992). More generation and propagation models will be added to EASEE
in the future.

The abstract base class for both feature and fusion processors is Infer-
enceProcessor. DetectionFeatureProcessor and BearingFea-
tureProcessor are examples of feature processors that extend Infer-
enceProcessor, whereas DetectionFusionProcessor and
LocationFusionProcessor exemplify fusion processors that extend
InferenceProcessor.

DetectionFeatureProcessor is extended by a number of different
classes, each of which provides a different algorithm for calculating
probabilities of detection and false alarm. An important example of a

ERDC/CRREL TR-09-17 19

DetectionFeatureProcessor is DetectionNeymanPearson, which
implements the Neyman-Pearson (constant false-alarm rate) criterion
(Burdic 1984). Absolute threshold detection, relative threshold detection,
error minimization, and Bayes risk minimization have also been coded.

The techniques described in this section, involving interfaces and object
collections, facilitate the creation of a very general software design. The
main idea is that the various stages in the information flow shown in
Figure 4 are mutually independent when each step is performed at the
highest level of abstraction in the signal models and inferences. This
makes code for the various components highly versatile and reusable. For
example, when a new signal model class is written, existing feature proc-
essing algorithms operating on the abstract signal model class will accept
this new model and continue to function without modification. Conversely,
when a new processing algorithm is written, it will automatically operate
on all existing and future signal models.

ERDC/CRREL TR-09-17 20

6 Platforms: Sensor and Emitter
Representation

A platform represents an object that transmits and/or receives signals and
data. It incorporates feature transmitters, feature receivers, and fusion
processors. Some specific examples of platforms that we might be inter-
ested in implementing include tactical ground sensor systems such as the
Future Combat Systems (FCS), Tactical Unattended Ground Sensor (T-
UGS), intruder detection systems such as the Improved Remote Battlefield
Sensor System (I-REMBASS), gateway sensor nodes for collecting and fus-
ing data from other sensors, elevated platforms with imagery packages in-
cluding unmanned aerial vehicles (UAVs), and ground vehicles such as a
HMMWV (High Mobility Multipurpose Wheeled Vehicle) or a pick-up
truck. Note that platforms may also represent signal transmitters in a
more abstract sense, which is rather different from the conventional use of
the word platform in a military context. For example, a platform could
represent the acoustic background noise produced by a roadway, or the
infrared image of a tree or terrain behind the target of interest.

Configuration of a platform

Some illustrative configurations of feature transmitters and processors for
representing platforms are shown in Figure 5 and Figure 6. The wheeled
ground vehicle illustrates a simple platform with signal emitters only. It
transmits acoustic features (from the wheels and engine), seismic features
(from the wheels), and IR features (from the external body). The UAV il-
lustrates a hybrid emitter/sensor platform. Its engine produces acoustic
features that may be heard on the ground; it also has optical and IR cam-
eras. The intrusion detection sensor illustrates a multi-sensor platform
that collects acoustic, seismic, and IR data; detection processing is applied
to the sensor data individually and then at the platform level. The ground
sensor gateway/fusion node illustrates fusion of detection and bearing in-
ferences from other sensor platforms, which are fused and made available
for higher-level interpretation.

ERDC/CRREL TR-09-17 21

Wheeled ground vehicle

Feature
transmitter

(body)

Platform
state

Feature
transmitter

(wheels)

Feature
transmitter

(engine)

Infrared
features

Seismic
features

Unattended aerial vehicle

Feature
processor
(optical)

Platform
state

Acoustic
features

Feature
processor

(IR)

Feature
transmitter

(engine)

Optical
features

Infrared
features

Pd

Pd

Acoustic
features

Wheeled ground vehicle

Feature
transmitter

(body)

Platform
state

Feature
transmitter

(wheels)

Feature
transmitter

(engine)

Infrared
features

Seismic
features

Unattended aerial vehicle

Feature
processor
(optical)

Platform
state

Acoustic
features

Feature
processor

(IR)

Feature
transmitter

(engine)

Optical
features

Infrared
features

Pd

Pd

Unattended aerial vehicle

Feature
processor
(optical)

Platform
state

Acoustic
features

Feature
processor

(IR)

Feature
transmitter

(engine)

Optical
features

Infrared
features

Pd

Pd

Acoustic
features

Figure 5. Configurations of feature transmitters and processors to represent a wheeled

ground vehicle (left) and an unattended aerial vehicle (right).

Ground sensor
gateway/fusion node

Inference
processor
(location)

Platform
state

Inference
processor
(detection)

Pd

Node-
level Pds

Acoustic
bearings Location

accuracy

Intrusion detection sensor

Feature
processor
(seismic)

Platform
state

Feature
processor
(infrared)

Feature
processor
(acoustic)

Inference
processor
(detection)

Pd

Acoustic
features

Seismic
features

Infrared
features

Pd

Pd

Pd

Ground sensor
gateway/fusion node

Inference
processor
(location)

Platform
state

Inference
processor
(detection)

Pd

Node-
level Pds

Acoustic
bearings Location

accuracy

Intrusion detection sensor

Feature
processor
(seismic)

Platform
state

Feature
processor
(infrared)

Feature
processor
(acoustic)

Inference
processor
(detection)

Pd

Acoustic
features

Seismic
features

Infrared
features

Pd

Pd

Pd

Intrusion detection sensor

Feature
processor
(seismic)

Platform
state

Feature
processor
(infrared)

Feature
processor
(acoustic)

Inference
processor
(detection)

Pd

Acoustic
features

Seismic
features

Infrared
features

Pd

Pd

Pd

Figure 6. Configurations of feature and fusion processors to represent an intrusion detection

sensor (left) and a ground-sensor gateway/fusion node (right).

Software implementation

All EASEE platforms have a state that describes the position, velocity, and
orientation of the platform as a function of time. Values for these quanti-
ties at multiple points in time may be specified, as will be described later
in this section. Other state information may also be included, as desired.
For example, it might be desirable to include information on the engine

ERDC/CRREL TR-09-17 22

transmission settings of a ground vehicle. The state information can be
utilized by feature generators and transmitters to capture dynamics in a
particular detection problem, such as the variation of the thermal signa-
ture of terrain with time of day.

Just like individual transmitters, receivers, and processors, the platforms
implement the feature transmission and inference interfaces described
earlier. The main distinction is that the platform may encapsulate multiple
transmitters and processors. In the wheeled ground vehicle example in
Figure 5, a platform-level implementation of the
AcousticOctaveBandTransmission interface would encapsulate two
transmitters, one for the acoustic emissions of the engine and one for the
wheels. The signature data features for each of these transmitters would
then be bundled into a Java ArrayList collection.

Consistent with the development pattern for other types of objects in
EASEE, a generic abstract platform class is at the base of the inheritance
tree. This generic platform contains no transmitters, receivers, or fusion
processors. But, it does define a pair of lists that play a key role in the
EASEE architecture. One listing specifies the platforms to be queried for
signature data features, whereas the other specifies the platforms to be
queried for inferences. The former can be conceptualized to indicate those
platforms in close enough proximity that their signals are able to propa-
gate through the environment and reach the platform of interest. The lat-
ter corresponds to those platforms connected through a communication
network.

Implementations for specific platform configurations (such as those
shown in Figure 5 and Figure 6) add the feature generators, feature propa-
gators, feature sensors, feature processors, and fusion processors, all as
needed to create the desired functionality. The general idea is that these
platforms represent a general configuration of interest, as illustrated in
these figures. Instances of the platform classes are constructed with spe-
cific characteristics. For example, instances of wheeled ground vehicles
could be a specific type of HMMWV or a Toyota Tacoma pick-up truck.
The signature generators would use essentially the same code, but produce
somewhat different signatures.

The EASEE platform design and interfaces are configured to support a
data-pull (as opposed to data-push) style of information flow. In a data-

ERDC/CRREL TR-09-17 23

push architecture, the signal emitters (transmitters) produce the signature
data features they are capable of producing and then send the data to the
sensors (feature processors). In data-pull architecture, the sensors (feature
processors) request signature feature data, and then the signal emitters
(transmitters) provide it.

An earlier acoustic/seismic DST, the Sensor Performance Evaluator for
Battlefield Environments (SPEBE) program (Wilson et al. 2001), imple-
mented a data-push scheme. The main drawback of such a scheme is that,
without some additional exchange of information or loss of fidelity, all
emitter information must be generated and transmitted, so that the sensor
platforms can then select what information they need. For example, an
emitter platform may include IR, optical, EM, magnetic, acoustic, and
seismic signatures. Lacking knowledge of the characteristics of the sensor
field, all of this information would have to be pushed. If the sensor field
actually consisted only of, say, seismic sensors, this would waste computa-
tional resources.

In data-pull architecture, however, the signal processors request and re-
ceive only the needed information. Hence we have chosen to implement
this approach for EASEE. This approach is also consistent with modern
server-client architectures. Overall, the process begins with the user inter-
face application sending a request for a prediction (inference) to the plat-
forms. The platforms then determine which signature data features and
inferences will be needed to fill this request, and request the features from
other platforms based on the lists mentioned earlier. Eventually, the de-
sired inferences are calculated and sent to the user interface application.

Platform positioning and problem viability

A viable signal transmission and detection problem must contain at least
the following three elements: (1) a transmitter of interest (which provides
the signal), (2) an interfering transmitter (which provides the noise), and
(3) a receiver (which senses the signal and noise). Many real-world prob-
lems actually involve multiple transmitters and receivers. In this section,
we consider how many and what combinations of transmitters and receiv-
ers should be accommodated in a software design, and the constraints on
their allowable positions. This is important for designing an appropriate
degree of flexibility into platform representations and employing them.

ERDC/CRREL TR-09-17 24

Let us first consider a straightforward problem in which we have a single
transmitter of interest and want to determine at what locations in space it
can be detected. (Positioning of the interfering noise transmitter will be
discussed momentarily.) This is sometimes called the footprint of the
transmitter. This situation can be implemented systematically by placing
the transmitter at a single fixed position in space, and varying the receiver
position across a spatial grid. The density and geometry of the grid are de-
termined by user preferences and computational considerations – too
large a grid will result in a too long a calculation. The grid may consist of a
regular Cartesian grid or a polygonal terrain representation.

Also of interest is the reciprocal of the preceding problem, in which there
is a single receiver and we wish to know transmitter locations where detec-
tion will occur. This is sometimes called the footprint of the receiver. We
can implement this problem by placing the receiver at a single fixed posi-
tion and then varying the transmitter position across a spatial grid.

We refer here to a receiver or transmitter position that is varied across a
spatial grid as variable. Calculation results corresponding to the position
of the variable receiver or transmitter will typically be overlaid on the ter-
rain display as a map layer.

Does it make sense to define a problem in which both the receiver and
transmitter positions are variable? The answer is both “yes” and “no.” If
the positions are varied independently, and there are N locations for each,
then there would be N2 problems to solve. Such a computation could be
time-consuming and confusing to display. On the other hand, there may
be situations where it is reasonable to vary the positions of the receiver
and transmitter in a manner that their relative positions and orientations
are fixed. Solution of such a problem involves only N locations. In particu-
lar, they could both be at the same grid position. This would make sense if,
say, there is a microphone positioned on a vehicle that is emitting acoustic
noise, in which case the transmitter and receiver move together.

More complicated problems might involve multiple fixed transmitters
and/or multiple fixed receivers. For example, one might be interested in
determining the locations where a transmitter could be detected by a net-
work of receivers. In this case, we have multiple fixed receivers but a vari-
able transmitter position. Similarly, we could have multiple fixed transmit-

ERDC/CRREL TR-09-17 25

ters contributing simultaneously to the signals received by a single receiver
for which the position is variable.

Another twist to the problem is the existence of interfering transmitters.
The interfering transmitters are often referred to as noise or nuisance
sources. There could be multiple interfering transmitters. It is also possi-
ble to consider an interfering transmitter for which the position is variable.
Typically, we would sum the contributions from the interfering transmit-
ters together, and separately sum the contributions from the transmitters
of interest; these quantities then represent the signal and noise in the de-
tection problem.

Finally, we might think of a transmitter as being distributed in space. For
example, the noise produced by traffic is distributed along a roadway, and
the noise produced by wind blowing through a forest might be regarded as
distributed in volume. In a numerical implementation, the distributed
transmitter could be represented at many discrete locations on a computa-
tional grid, and its strength adjusted in accordance with the resolution of
the grid. While in some situations such a representation might be useful,
typically it will result in a large number of transmitters, the signals of
which must be propagated (transmitted) through the environment, and
this would likely be a very computationally intensive process. A practical
resolution is to represent the actual field produced by the distributed
transmitters directly. This is precisely what a receiver would observe and is
often measured directly as the “background noise” for a particular prob-
lem.

All of the situations described above (except for the N2 problem) can be
addressed in the following way. We solve N problems involving one or
more transmitters of interest, one or more interfering transmitters, and
one or more receivers in parallel. If desired, each transmitter/receiver can
be at a fixed position in space for each of these N problems, or it can vary
among locations on a spatial grid.

This observation motivates the structure of the platform state description
in EASEE. As mentioned earlier, the state may describe multiple platform
locations at each point in time. Specifically, all platforms in a given prob-
lem are allowed to have N locations at a given time. It is left to the user ap-
plication interface driving the EASEE calculation to set up the locations in
a manner consistent with the problem posed by the user.

ERDC/CRREL TR-09-17 26

7 Environmental Representation

We use the term scenario for the environmental (atmospheric and terrain)
information needed by a calculation. In general, the scenario may impact
all stages of a sensor performance calculation. For example, an IR signa-
ture feature generator is dependent upon factors that include the solar an-
gle, cloud cover, and wind. The signal propagation process is strongly af-
fected by the environmental conditions, particularly for acoustics and
seismics. The performance of a seismic sensor is affected by its coupling to
the ground, which depends on the ground properties.

One of the main challenges in representing the environment is to
accommodate multiple types of data specifications. The weather may be
described by data from a numerical forecast model or by selecting from a
library of typical weather conditions. Terrain elevation data comes in
varying resolutions (e.g., varying levels of digital terrain elevation data
[DTED] and grid structures [Cartesian, polygonal, etc.]).

In EASEE, scenario translators play the important role of converting the
scenario information into parameters needed by platforms and their fea-
ture generators, propagators, and processors. The translators implement
Step 2 of the process described in Section 2. Generally speaking, a differ-
ent translator is needed for each combination of scenario specification and
feature generator, propagator, and processor. In practice, coding of sce-
nario translators is a very important and challenging part of the predictive
process. It often involves physically based assimilation methods designed
to make optimal use of available information and to supply reasonable
values for unavailable parameters.

Two environmental scenario classes have been implemented in EASEE.
Both are extensions of the abstract parent class EnvironScenario,
which includes only a time stamp for the environmental data and a digital
elevation map describing the terrain elevations.

One of the environmental scenario classes, EnvironScenarioHomo, is
intended to be the simplest possible description of the environment. It in-
cludes objects for the following: (1) the time of the atmospheric/terrain
observation, (2) the atmosphere as humid air (a mixture of dry air and wa-

ERDC/CRREL TR-09-17 27

ter vapor, each of which are assumed to be ideal gases), (3) the subsurface
as an isotropic, linear, lossless solid, and (4) the local height of the ground
above sea level. Some additional information on these object representa-
tions is provided in the Appendix.

The other environmental scenario class, EnvironScenarioVert,
supports specifications of height-dependent atmospheric properties,
depth-dependent subsurface properties, and a digital elevation map
(DEM). It includes objects for the following:

• the time of the atmospheric/terrain observation

• the vertical profiles of atmospheric wind, temperature, pressure, and
humidity

• the low-, mid-, and high-altitude cloud fractions

• an atmospheric surface-layer parameterization for heat, momentum,
and humidity exchange with the ground surface (which can be used to de-
scribe turbulence)

• a parameterization of the aerodynamic, acoustic, and optical properties
of the ground

• a geographic grid representing the DEM

• the vertical profiles of subsurface density, compressional wave speed
and attenuation, and shear wave speed and attenuation

Availability of scenario translation for a particular environmental
representation is declared at the transmitter, processor, or platform level
through implementation of a corresponding interface.
EnvironHomoTranslation is for translation of homogeneous
environmental descriptions, EnvironVertProfTranslation is for
translations environmental descriptions with vertical profiles of
atmospheric and subsurface variables. When a platform supports a
specified interface, all signal transmitters and processors on the platform
must also support that interface.

ERDC/CRREL TR-09-17 28

8 Signal Transmission Grids

The EASEE architecture has been designed to accommodate signal propa-
gation models possessing varying degrees of fidelity. To this end, signal
propagation is described by transmission grids possessing various spatial
symmetry properties. The grid describes how the signal depends with dis-
tance and direction from the source, and also how it depends on the source
position, if this is indeed the case. The parameters stored on the transmis-
sion grid are signal power (or another conservative quantity such as mass),
and the azimuthal and elevation angles of the propagation direction. The
appropriateness of a given grid will depend on the signal modality (e.g.,
acoustic, seismic, radio frequency, optical, etc.) as well as the environ-
mental model. Grids of lower complexity can generally be promoted to
grids of higher complexity.

Transmission grids are available in two general varieties: structured and
unstructured. Structured grids are appropriate when the source and/or
receiver positions occur in a regular, geometric pattern. Unstructured
grids are appropriate when the positions are irregular. In EASEE, struc-
tured grids are also intended for calculations performed in free space or
above a flat ground, because calculations performed on these grids do not
incorporate information on the digital elevation map (terrain elevations).
Calculations performed on unstructured grids do incorporate the DEM.

The simplest type of structured grid is for propagation problems in which
the signal strength depends only on the distance from the source to the re-
ceiver; that is, the propagation is independent of the source position and
the direction to the receiver. Since the propagation thus depends on only
one variable (distance), the calculations can be stored in a one-
dimensional array. We call this format a homogeneous, isotropic grid.
Such a format might be appropriate if the environment is horizontally
stratified, if the signal propagation is unaffected by the ground, and if
there are no significant horizontal variations in the atmosphere.

The next considered degree of complexity is for problems in which the
propagation depends on the height of the source and the height of the re-
ceiver, as well as the horizontal distance (called the range) between them.
This situation applies, for example, to acoustic or electromagnetic propa-

ERDC/CRREL TR-09-17 29

gation in an atmosphere with horizontally stratified density or thermal
structure, and to seismic propagation when the ground has horizontally
stratified density, wave speeds, and bulk moduli. This type of grid is
termed vertically inhomogeneous and horizontally isotropic and is 3D in
its storage requirements.

In some situations, such as sound propagation in the presence of wind, it
becomes important to account for the horizontal directionality of the
propagation. Hence the next degree of complexity is the vertically inho-
mogeneous and horizontally anisotropic grid, which involves 4D storage.
Here, the propagation depends on the source height, receiver height,
range, and azimuthal direction of the receiver relative to the source.

All of the grids discussed to this point have assumed that the propagation
does not depend on the absolute position of the source. Such an assump-
tion breaks down when there is substantial horizontal variability in the en-
vironment. In such situations we must resort to the most general form of
grid, namely where the signal propagation depends on the 3-D coordinates
of both the source and receiver. The storage requirements in general in-
clude the x, y, and z Cartesian coordinates of both the source and the re-
ceiver, and thus are 6-D. EASEE incorporates one variety of structured
6-D grid, namely a Cartesian (rectangular) grid mesh. This format can be
applied to situations where each of the coordinate axes of the sources and
receivers is independent.

As mentioned earlier, for the unstructured grids, the source and receiver
coordinates need not follow any regular pattern. EASEE incorporates two
general formats of unstructured grids: dual unstructured and fully un-
structured. The dual unstructured grid specifies the source and receiver
locations independently. A calculation is performed for each combination
of source and receiver locations. Hence, if Ns source locations are speci-
fied, and Nr receiver locations are specified, the number of grid elements is
Ns Nr.

The fully unstructured grid has a single list that specifies pairs of source
and receiver positions; that is, N pairs of source and receiver positions are
specified. The transmission is calculated for each of the N pairs of source
and receiver positions.

ERDC/CRREL TR-09-17 30

The transmission grids may be constructed either by specifying only the
signal power, or by specifying the signal power as well as the propagation
directions. If the directions are not specified, propagation is assumed to be
line-of-sight. That is, the direction of the receiver relative to the source is
calculated, and used to infer the propagation direction.

Propagation calculations in EASEE are actually explicitly performed on
unstructured grids. If a single source or receiver position enters into the
calculation, a dual unstructured grid method is called. If multiple (but
equal in number) source and receiver positions are specified, as discussed
in Sec. 6, a fully unstructured grid is used. A new signal model is then con-
structed at each grid location. The reason for emphasizing the unstruc-
tured grid is that the source and receiver locations may be arbitrary, or
they may be distributed across a geographic grid, such as a lati-
tude/longitude coordinate system, that does not lead to equal spacing.

Still, the structured grids play an important, underlying role in EASEE.
Propagation models often naturally produce structured grids. For exam-
ple, the previously mentioned Crank-Nicholson parabolic equation natu-
rally produces vertically inhomogeneous and horizontally anisotropic (4D)
grid. It is thus convenient to perform and store the calculation on this grid,
rather than a full 6D grid. The calculation results can then be interpolated
onto an unstructured grid as needed.

ERDC/CRREL TR-09-17 31

9 Conclusions

The purpose of this report has been to describe a flexible, object-oriented
software design for predicting signal transmission and sensing on the bat-
tlefield. The Java-language software based on this design is called Envi-
ronmental Awareness for Sensor and Emitter Employment, or EASEE.

The central elements to the EASEE software design are statistical models
for signature data features and inferences. EASEE provides the “glue” for
tying together models for signature generation, propagation, sensing, and
processing, in a manner that decouples these models from specific envi-
ronmental descriptions.

At the time of this writing, an initial version of a MATLAB user interface for
EASEE has been completed. We have begun but have not yet completed
implementation of a Java OpenMap implementation. Our intention is to
make EASEE general enough so that it can be implemented within many
other software architectures, and thus enable advanced signal propagation
and processing calculations in a great variety of modeling and simulation
efforts supporting the warfighter and homeland security.

ERDC/CRREL TR-09-17 32

References

Attenborough, K., S. I. Hayek, and J. M. Lawther. 1980. Propagation of sound over a
porous half-space. J. Acoust. Soc. Am. 68: 1493–1501.

Baker, M. B, M. Eylander, and H. Harrison. 1983. The statistics of chemical trace
concentrations in the steady state. Atmos. Environ. 18: 969-975.

Burdic, W. S. 1984. Underwater acoustic system analysis. Englewood Cliffs NJ: Prentice-
Hall. pp. 244–296.

Frankenstein, S., and G. G. Koenig. 2004. Fast all-season soil strength (FASST).
ERDC/CRREL SR-04-1. Hanover NH.: U. S. Army Corps of Engineers, Cold
Regions Research and Engineering Laboratory.

Hieb, M. R., S. Mackay, M. W. Powers, H. Yu, M. Kleiner, and J. M. Pullen. 2007.
Geospatial challenges in a net centric environment: Actionable information
technology, design, and implementation, report 657816. In proceedings of SPIE
Defense and Security Symposium, Defense Transformation and Net-Centric
Systems, edited by R. Suresh.

Klein, L. A. 2004. Sensor and data fusion. Bellingham, WA: SPIE Press,.

Limpert, K., W. A. Stahel, and M. Abbt. 2001. Log-normal distributions across the
sciences: Keys and clues. BioScience 51: 341-352.

Lowe, D. 2005. Java all-in-one desk reference for dummies. Hoboken NJ: Wiley. p 860.

Nadarajah, S. 2008. A review of results on sums of random variables. Acta Appl. Math
103: 131–140.

West, M., K. Gilbert, and R. A. Sack. 1992. A tutorial on the parabolic equation (PE)
model used for long range sound propagation in the atmosphere. Appl. Acoustics
37: 31–49.

Wilks, D. S. 2005. Statistical methods in the atmospheric sciences. Burlington, MA:
Academic Press.

Wilson, D. K., D. H. Marlin, and S. Mackay. 2007. Acoustic/seismic signal propagation
and sensor performance modeling, report 65620R. In proceedings of SPIE
Defense and Security Symposium, Unattended Ground, Sea, and Air Sensor
Technologies and Applications IX, edited by E.M. Carapezza.

Wilson, D. K., J. M. Noble, B. H. VanAartsen, and G. L. Szeto. 2001. Battlefield decision
aid for acoustical ground sensors with interface to meteorological data sources ,
208–219. In proceedings of SPIE AeroSense Symposium, Battlespace Digitization
and Network-Centric Warfare, edited by R. Suresh.

ERDC/CRREL TR-09-17 33

Wilson, D. K., C. L. Pettit, M. S. Lewis, S. Mackay, and P. M. Seman. 2008. Probabilistic
framework for characterizing uncertainty in the performance of networked
battlefield sensors, report 698104. In proceedings of SPIE Defense and Security
Symposium, Defense Transformation and Net-Centric Systems, edited by R.
Suresh..

Wilson, D. K., B. M. Sadler, and T. Pham. 2002. Simulation of detection and
beamforming with acoustical ground sensors, 50–61. In proceedings of SPIE
AeroSense Symposium, Unattended Ground Sensor Technologies and
Applications IV, edited by E.M. Carapezza.

Wilson, D. K. and J. I. Torrey. 2006. Object-oriented approach to manipulating acoustic
and seismic spectra. ERDC/CRREL TR-06-20, U. S. Army Corps of Engineers,
Cold Regions Research and Engineering Laboratory, Hanover NH. 34 pp.

ERDC/CRREL TR-09-17 34

Appendix: Overview of EASEE Java Packages

This appendix provides an overview of the Java packages comprising
EASEE. It describes the various packages and classes at the time of this
report’s writing. The EASEE software is expected to continue to evolve.

Up-to-date documentation of a more technical nature, describing in detail
the various classes and their fields and methods, is distributed with the
software in conventional JavaDoc format.

Package mil.army.usace.easee.signalmodels

This package defines the signal models used to describe statistics of the
signature data features. Much background on this package has already
been provided in Section 3. For illustrative purposes, Figure 7 shows the
branch of the inheritance tree leading to GammaSignalModel, along with
the particular methods defined at each stage.

• abstract class AbstractSignalModel
– abstract methods getFeatureInd and getFeatureClass (index and class of signature

data feature), checkFeatures etc. (check whether signal models are for same features),
pdfRule (probability density function), cdfRule (cumulative density function),
quantileRule (quantile function), sumRule (sum of two random variables), getMean,
getVar, methods getFeatureList, setClassMark, getClassMark, isNoise (interfering
noise or signal of interest), setNoise, combineSignal and combineNoise.

• class ConstantSignalModel extends AbstractSignalModel
– defines signal mean power, mean azimuth, and mean elevation
– implements methods pdfRule, cdfRule, quantileRule, sumRule, getMean, getVar for

a constant signal distribution
– constructs signal features by setting feature index and class, classification

marking, and whether feature is interfering noise or signal of interest

• class ExponentialSignalModel extends ConstantSignalModel
– overrides methods for pdfRule, cdfRule, and quantileRule
– construction analogous to ConstantSignalModel

• class GammaSignalModel extends ExponentialSignalModel
– overrides methods for pdfRule, cdfRule, and quantileRule
– adds variance parameter, methods to set variance, alpha, and beta
– construction analogous to ExponentialSignalModel

Figure 7. Derivation of the GammaSignalModel class, showing its parent classes and
inherited methods.

ERDC/CRREL TR-09-17 35

Package mil.army.usace.easee.spectra

This package provides a flexible representation for spectra as a sequence of
bands, each given by a frequency-dependent power law. The approach is
described by Wilson and Torrey (2006).

At present, the banded power-law representation is used mainly to store
acoustic and seismic spectra, and to convert them to signature data fea-
tures as needed. However, this representation may be used in the future as
a basis for building more flexible models for signature data features pos-
sessing variable center frequencies and bandwidths.

Package mil.army.usace.easee.infermodels

This package deals with inference modeling. Much of its functionality was
described in Section 4. Here, Figure 8 illustrates the inheritance tree for
processing features into detection inferences, along with the particular
methods defined at each stage.

Figure 8. Derivation of the detection feature and fusion processors, showing parent classes

and inherited methods.

ERDC/CRREL TR-09-17 36

Package mil.army.usace.easee.transmit

The transmit package contains the classes for representing and manipu-
lating signal transmission grids as described in Section 8. It also includes
signal propagation models that are common to different kinds of signal
types. These include methods for signal replication, cylindrical and spheri-
cal wave spreading, and for line-of-sight analysis.

Packages mil.army.usace.easee.acoustic,
mil.army.usace.easee.seismic, mil.army.usace.easee.optical, and
mil.army.usace.easee.radiofreq

Some background pertinent to these packages, which implement specific
signal modalities, was provided in Section 5. These packages consist of five
basic components.

1. Java enumeration classes defining the signal features and their properties.
2. A feature generator class (extension of the base FeatureGenerator

class) specific to the signal modality. This feature generator might call one
or more generation models included in the package.

3. A feature propagator class (extension of the base FeaturePropagator
class) specific to the signal modality. This feature propagator might call
one or more propagation models included in the package.

4. A feature sensor class (extension of the base FeatureSensor class) spe-
cific to the signal modality. One or more extensions to this feature sensor
may be provided to implement particular types of sensors.

5. Descriptions of environmental properties specific to the signal modality.

To clarify this last item, we focus on the acoustic package as an
example. This package defines an abstract class called AcousticMedium.
This class includes methods for retrieving and calculating the acoustic
wave number, attenuation, phase speed, characteristic impedance,
complex bulk modulus, and complex bulk density. Several classes extend
these methods. Of these, FluidMedium is the simplest. It provides a two-
parameter representation of a lossless fluid described by the fluid density
and bulk modulus. Another extension, AirMedium, builds on the
HumidAir class (from the EnvironScenario package) by adding
methods to calculate the sound speed and acoustic attenuation in humid
air. RelaxMedium and ZwikkerKostenMedium provide acoustic
properties appropriate for propagation in a porous material such as soil or
snow.

ERDC/CRREL TR-09-17 37

Package mil.army.usace.easee.platform

Platforms were described in Section 6. As indicated there, the abstract
Platform class serves as the basis for all other platform designs. A
platform includes a specification of its state, which is an object of the
PlatformState class, to be described shortly. Signal generators and
propagators, sensors, and feature and fusion processors, are also
instantiated by the platform. Platforms also include links for signature
data feature and inference requests, as described in Section 6.

The PlatformState class contains an array of times. The initial time in
the array specifies the time at which the platform is assumed to come into
existence. Subsequent times represent changes in state. For each time,
new spatial coordinates, velocities, attitude angles, and state variables are
specified. The coordinates are specified as a GeoGrid3D object, which is
part of the timeandspace package. The interpretation of the state vari-
ables is specific to a platform.

Package mil.army.usace.easee.timeandspace

This package includes a number of classes for manipulating time and
space coordinates.

The TimeCoord class is basically a wrapper around a
GregorianCalendar object, which is a part of the Java API (Application
Interface). It simplifies setting and retrieval of dates and times,
conversions between Universal Coordinated Time (UTC) and local time,
and provides the date and time in a string format that may be used by
software that interfaces to EASEE.

The GeoCoord class specifies geographic coordinates on the Earth’s sur-
face. The coordinates can be set or retrieved in latitude/longitude or Uni-
versal Transverse Mercator (UTM) formats. Functionality is also provided
to calculate the distance, relative northing, and relative easting between
multiple points. GeoCoord3D extends GeoCoord to include an altitude
specification which may be specified as either height above sea level or
height above local ground level.

The GeoGrid class provides a two-dimensional grid of latitudes and longi-
tudes. The origin and spacing of the grid are set by the user. Similarly,

ERDC/CRREL TR-09-17 38

GeoGrid3D is a three-dimensional grid, with latitude, longitude, and alti-
tude.

The ViewShed contains static methods for converting between height
above ground level (AGL) and above sea level (ASL), for analyzing lines of
sight, and for determining viewing angles on varying terrain.

Package mil.army.usace.easee.environscenario

This package provides the environmental representation capability as de-
scribed in Section 7. It includes some capabilities that may be of general
interest for atmospheric and seismic modeling.

The AtmosVertProf class defines mean vertical profiles for the wind,
temperature, humidity, and pressure in the atmosphere. It includes meth-
ods for setting and retrieving the profiles, and for converting between dif-
ferent wind coordinate systems, temperature systems, and humidity rep-
resentations.

The HumidAir class represents the properties of dry air mixed with water
vapor. It defines a number of constants for thermodynamic properties of
dry air and water vapor, and methods for getting and setting the
temperature, pressure, density, and humidity. (Note that, for an ideal gas,
only two quantities among the temperature, pressure, and density are
independent.) Humidity may be specified as mixing ratio, specific
humidity, relative humidity, and other options; the class converts between
these representations. Methods are also provided for calculating the
viscosity, thermal conductivity, Prandtl number, and saturation vapor
pressure. The HumidAir class complements AtmosVertProf, since it
allows quantities to be calculated, such as density, that are not explicitly
modeled as vertical profiles in AtmosVertProf.

The AtmosSurfLayer class represents a turbulent, constant-flux atmos-
pheric surface layer (ASL). (Typically, the surface layer occupies the low-
ermost 30–300 m of the atmosphere.) The class defines the parameters
necessary to represent a turbulent ASL, including the friction velocity, sen-
sible heat flux, latent heat flux, roughness length, and wind direction. Con-
structors are generally used to set these fields. Then, the near-ground
wind, temperature, and humidity profiles can be retrieved.

ERDC/CRREL TR-09-17 39

The CloudFrac class is a very simple one, as it represents the fraction of
the sky that is blocked by clouds at low, middle, and high altitudes.

The GroundSurface class represents the hydraulic, optical, and acousti-
cal properties of the ground surface. (Note that aerodynamic properties of
the ground are defined in the AtmosSurfLayer class.) Among these are
the permeability, static flow resistivity, volume porosity, emissivity, and
albedo. Typical values for these quantities are provided for common
ground surfaces such as grass, sand, and snow.

The counterpart of AtmosVertProf, but for subsurface properties, is the
SeismicVertProf class. It defines vertical profiles for the compressional
wave speed, shear-wave speed, compressional wave attenuation quality
factor, shear-wave attenuation quality factor, and density in the ground.

The SolidIsoLinear complements SeismicVertProf much as
HumidAir complements AtmosVertProf. SolidIsoLinear includes
typical values for the density, compressional wave speed, and shear-wave
speed of a number of typical ground types such as water, concrete, sand,
shale, basalt, etc. Objects may be created by specifying density,
compressional wave speed, and shear-wave speed or by density, bulk
modulus, and shear modulus. Methods are provided for retrieving the
wave speeds, moduli, Lamé constants, Poisson’s ratio, etc.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

30-12-2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
Object-Oriented Software Model for Battlefield Signal Transmission and Sensing

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)
D. Keith Wilson, Richard Bates, and Kenneth K. Yamamoto

5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION REPORT
NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Engineer Research and Development Center (ERDC)
Cold Regions Research and Engineering Laboratory (CRREL)
72 Lyme Road
Hanover, NH 03755-1290

ERDC/CRREL TR-09-17

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
GEMENI U.S. Army Engineer Research and Development Center (ERDC)

Geospatial Intelligence Program, Exploitation in Man-made
Environments
72 Lyme Road
Hanover, NH 03755-1290

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Realistic modeling and simulation of battlefield signal transmission and sensing requires accounting for many complicated environ-
mental and mission-related factors. These factors present complex challenges because of their diversity. Yet, successful modeling and
simulation can enable effective mission planning and can support a variety of other military objectives. This report describes the devel-
opment of a very flexible, object-oriented software design for predicting signal transmission and sensing on the battlefield. This Java-
language software is called Environmental Awareness for Sensor and Emitter Employment (EASEE). It is intended for application to a
wide range of sensing modalities, and for incorporation into military command and control (C2) systems, decision support tools
(DSTs), and force-on-force simulations. An initial version of a user interface for EASEE has been completed and a Java OpenMap im-
plementation has begun. The goal of this work is to make EASEE general enough to be implemented within many software architec-
tures, which will enable advanced signal propagation and processing calculations in a number of modeling and simulation efforts in
support of the warfighter and homeland security.

15. SUBJECT TERMS
 Software, modeling and simulation, battlefield sensors, EASEE, decision support tools (DSTs), object-oriented programming (OOP),
military training
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER

OF PAGES
19a. NAME OF RESPONSIBLE PERSON

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

UU

45
19b. TELEPHONE NUMBER (in-

clude area code)

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

	Abstract
	Table of Contents
	Figures and Tables

	Preface
	1 Introduction
	Background
	Objectives
	Tech transfer
	Outline of information

	2 Object-Oriented Software Design
	Introduction to object-oriented programming
	An object-oriented view to signal transmission and sensing

	3 Signature Data Features
	Signal model objects
	Feature definitions

	4 Inference Objects
	5 From Feature Generation to Inference Fusion
	Information flow
	Software implementation

	6 Platforms: Sensor and Emitter Representation
	Configuration of a platform
	Software implementation
	Platform positioning and problem viability

	7 Environmental Representation
	8 Signal Transmission Grids
	9 Conclusions
	References
	Appendix: Overview of EASEE Java Packages
	Report Documentation Page

